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Abstract. The continuous Limit for the Kac—Van Moerbeke (KvM) hierarchy, for their bi-
Hamiltonian formulation, recursion relation and square eigenfunction relation is studied. A new
family of integrable symplectic maps (1SM) are reduced from the KvM hierarchy via constraint for
a higher flow of the hierarchy in terms of square eigenfunctions. Their integrability is deduced
from the discrete zero-curvatute representation of the XvM hierarchy. It is shown that these
ISMs provide maps which approximate many well known integrable mechanical systems (e.g.
Neumann, Garnier) embedded into the xav hierarchy as their restricted flows.

1. Introduction

It is a very remarkable fact that all stationary and restricted flows of the Kdv hierarchy are
equivalent to finite-dimensional integrable Hamiltonian systems (FDIHS) (see, for example,
[1-3]). In practice solutions of such Hamiltonian systems are computed numerically with
the use of standard discretization procedures (e.g. the multistep method) which are non-
integrable and introduce numerical chaos into the computational process. Much better
approximation procedures are exhibited by symplectic maps [4] and even better by integrable
symplectic maps which stay on invariant tori of its integrals of motion [3].

A natural and interesting question is to construct integrable discretization for the
integrable Hamiltonian systems which follow from restricted flows of soliton hierarchies.
By restricted flows of a soliton hierarchy we mean sets of ODEs invariant with respect to
the action of all flows of this hierarchy which are constructed in the following way: they
consist of a fixed number of copies of the spectral problem and of a restriction for a (higher)
flow of the hierarchy in terms of square eigenfunctions. It has been shown [2, 3,6, 7] that in
many instances these restricted flows are finite-dimensional integrable Hamiltonian systems.
A general procedure for constructing integrable symplectic maps as restricted flows of a
difference soliton hierarchy of equations, which follow from the proper discretization of the
continuous spectral problem, has been introduced in [8-10]. We suppose that the hierarchy
of integrable discrete systems is associated with a discrete isospectral problem and possesses
Hamiltonian structure. Then we consider the system consisting of N copies of the spectral
problem and of constraint relating the variational derivatives of Hamiltonian functions and
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eigenvalues. This system is also invariant under all fiows in the hierarchy, and give rises
naturally to discrete Euler—Lagrange equations. In many instances these systems have the
form of integrable symplectic maps (1sM). However, it is not a trivial task to show that these
maps go to the Hamiltonian systems defined as restricted flows of the continuous hierarchy.
In the best case one would like to show that all structures of the discrete hierarchy, such as
the spectral problem, recursion relation, and square eigenfunction relation and Hamiltonian
structure, together with integrable maps go to the corresponding objects of the continuous
hierarchy.

In this paper we study the Kac—Van Moerbeke (KvM) hierarchy, and show how their
Hamiltonian structure, recursion relation and square eigenfunction relation converge to those
for the Kdv hierarchy. We will show that the restricted flows of the KvM hierarchy can
be transformed into symplectic maps, and integrals of motion and integrability for these
symplectic maps can be deduced directly from the discrete zero-curvature representation for
the hierarchy. We find that these ISMs are discrete version of restricted flows of the Kav
hierarchy.

Discrete versions of several classical integrable systems are investigated in [11]. To
describe such a discrete system a variational principle is taken as a starting point, and the
Lax representation for the discrete integrable system is found via a factorization of certain
matrix polynomials in [11]. In our approach the starting point for reducing discrete maps is a
hierarchy of integrable discrete systems with Lax representation and Hamiltonian structure,
and the property of these maps, such as the Lax representation, is directly deduced from
one of the hierarchy. It is easy to find that our approach and the approach mentioned above
are quite different and used to treat different subjects.

This paper is organized as follows. In the next section, we briefly describe a zero-
curvature representation for the KvM hierarchy. Then in section 3 we show how the
Hamiltonian structure, the recursion relation and the square eigenfunction relation for the
KvM hierarchy converge to those for the Kdv hierarchy, and find a sequence of equations
in the KvM hierarchy which has the KdVv hierarchy as a continuous limit. In section 4, we
show that restricted flows of the KvM hierarchy can be transformed into a symplectic maps,
and their integrability can be deduced direcly from that of KvM hierarchy by means of the
discrete zero-curvature representation. Finally in section 5 we prove that restricted flows of
the KvM hierarchy go to restricted flows of the Kdv hierarchy.

2. The KvM hierarchy and the Kdv hierarchy

2.1. The KvM hierarchy

We now briefly present the discrete zero-curvature representation for the KvM hierarchy
which can be deduced from that for Toda hierarchy in [12]. Consider the following discrete
isospectral problem [13],

(E+vE )y =2y @20

where v = v(n,t) and y = y(n,t) depend on integers n € Z and ¢t € R, A is the spectral
parameter, shift operator E and difference operator D are defined as

(Efy(ny= f(n+1) (DY) =(E—=1)f(r) nek. (2.2)
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Throughout this paper we write f® = E® f. The scalar spectral problem (2.1) is equivalent

to the following matrix spectral problem:

Evy=Uy  U=U(,A)= (_Ou i) 2.3)
with
¥ = (¥, ¥aF = (ETVy, v (24)

To derive the hierarchy of evolution equations associated with (2.3), we first solve the
stationary discrete zero-curvature equation [12]

(ETYU -UT =0. (2.5)
By substituting

r=(¢ ® —i‘r-a-':—m G by, 2.6)
“\e —a)” S AN '

i=0 f

into equation (2.5) and taking the initial value as

w=1 =0 b=-1 @7
we find that
@m=v as = v £ o400 by = —v— =D (2.8q)
aq=v a=uvw+o,. .. (2.85)
and
bz,'=(.‘2,'2a2,'+1=0 i=0,1,... . (28C)
Coip1 = —vbé}ll bris1 = —(aé,-_” + ax). (2.84)
Moreover, the quantities
Py=2 (2.9a)
v
satisfy
GPy =Py i=01,... (2.95)
where J and G are Hamiltonian operators defined as
J =v(E"D - E) _
. 2.10
G= v[vE('l) + o DEED Ly ENECED _yE — gD _ v(l)E]v. 210
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The first Py; read

,P0=i P=1 P4=U-|-U(_D+U(1)
2v (2.11)
Ps = v®(w + oW + @) + o0 + 050 + vD) + oD + 08D - pDy 4Dy

We set the auxiliary linear problem as

U, =Van¥  m=12,... (2.12)
with
Vam = (TA*™)1. + Ao
(gHemn TR+ (0 0). em
2oy CupATHTL B s au AT 0/ '

The compatibility condition of (2.3} and (2.12) gives rise to the discrete zero-curvature
equations (assuming A,, = 0)

U, =(EVan)U = UVay  m=1,2,... (2.14)
which is the Kac—Van Moerbeke (KvM) hierarchy of equations
- s H:
v, =@ — ) = T Py, =J—ajﬂ m=1,2.... (2.15)

By E‘S-v- we denote discrete variational derivative defined as

af i 9f
A EC 2
Sv % u®

We remind the reader that

Let us define V in terms of T by I' = V. Then it is deduced from (2.5) that
DI =[U, V] rY=yy 217
D(@* + be) = 1 D(TT?) = HTe(UV): = Te(VUY ] =0 (2.18)
where Tr means trace of a matrix. In the same way as given by [14], we get from (2.12)
I o== Vo, T 2.19)
which yields
2i(a2 +be) = iT;rr2 = —iTr{Vz,,,, r1=0. (2.20)
dt, dt, it
The adjoint equation of (2.1) is
(ECD + Evyy* = ay* (2.21)
and in matrix form
EV=¢U ¢ =(,¢2)=(—E@y").y"). (2.22)
The adjoint equation of (2.12) reads
EDg, = —(EV¢) Vo . (2.23)
It can be found by a direct calculation that
= =ty (2.240)
Gi—z = AZJ% or (G~ A (¥dn) =0. (2.24b)
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2.2, The Kdv hierarchy

For the Kdv hierarchy we accept the follwing conventions.
Schridinger spectral problem of the form [14]

@ +u—-25=0
which can be written as

where 3 = % and
=0, =G 7).
The Kdv hierarchy then reads
Uy, = ByP,,
where all P; are determined from the recursion relation

BoPri1 = B Py k=0,1,...

By = By =18 +ud + lu,.

The first Py are
Po=2 Pi=u  Pr=3i0u"+ux)
Py = f(ttrexs + 100ty + 5uZ + 104%) .

The adjoint equation of (2.25) is
@ +u—-y =0
and in the matrix form
3¢ = —¢U ¢ ={d1, $2) = (=55, 7).

It is known that

Bi—u =ABy—  or (By — ABo)(¥162) = 0.

3829

It is associated with the

(2.25)

(2.26)

(2.27)

(2.28)

(2.29a)
(2.295)

(2.30)

(2.31)

(2.32)

(2.33a)

(2.33b)
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3. The continuous limits of the KvM hierarchy

In this section we will show that the Hamiltonian structore, the recursion relation and the
square eigenfunction relation for the KvM hierarchy converge to those for the Kdv hierarchy,
and find a sequence of equations in the KvM hierarchy which has the Kdv hierarchy as a

continuous limit.
Let us consider the KvM hierarchy on a lattice with a small step A. Define

v(n) = 1 + u(x)h? y(n) = () y*(n) = o (x) A=24 2R (3.1a)
whsare & is a constant, and

E®y = 14 u(x + kh)A? E®y = of(x + kh) E®y* —oj*(x +kh). (3.1b)
It is known that the spectral problem operator has the expansion

(E +vECY — Dy = ah®(@® +u — )y + 0% (3.24)
(Ev+ ECD — 0y* = ah?(@2 + u — 1) + 0. (3.2b)

Then we find (see appendix A) that

G — )2J = =8(By, — ABo)i®> + O(1°) . (3.3)
Notice that
y=ip=0y= oty yV=¢ =ay* = oy (3.4a)

and therefore

Uigr =y = ada +OG). ' (3.4b)
Thus it follows from (3.3) that for square eigenfunctions

(G = 321)(W1¢2) = —8¢”h*(B1 — ABo)(¥142) + O (3.5)

which implies that the continuous limit of (2.24%) gives (2.334). It is known [14] that for
the properly defined square eigenfunctions

Yigp =) Ppd™¥ (3.6)
i=0

Tiga =) Prh~* G.7)
k=0

so that, due to (3.5), the recurrence relation (2.94) corresponds to the recusrence relation
(2.29a}.

Also it is shown in appendix A that we have the following relationship between Py
and Py:
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Proposition 1.

k
Py = E Bri Py = P h% + O(* )

i=0
where
_ —1* 2k — Dt
B = (5 Bro = "('*“-"i%:;k—,'-i—
Bri = 3B-ri1 — Broii i=1. ., k-1

The first Py, read

4P, P=P—2p, By=L(Py— 6P, + 6Py

ﬁo =
Ps = J=(Ps — 10Py + 30P; — 20F0), ....

From equations (3.8a) and (3.3a), we obtain

k
TPy =Y Brid Py = —2BoPrh™ ! + O(*+?)
i=0

and

1 —~ —
Uy + gy Pom = (s, = BoPm) + OCF).

So we have the following proposition.

Proposition 2. The following sequence of equations in the KvM hierarchy.

1 o
U = Jsz m=.1,2,..

L ~2h2m—1

goes to the Kdv hierarchy (2.28) in the continuous limit.
For example, for m = 2, we find that the equation

1
Uy = -@v(}f(‘” — Eyo(v+ v + 0 —6)

has the following Kdv equation as a continuous limit:

1
Uy = Z(ﬁuux + Ugxx).

3831

(3.80)

(3.86)

(3.9

(3.10)

(3.11)

(3.12)

{3.13)

(3.14)
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4, New integrable symplectic map
We consider for N distinct A;, j = 1,..., N, the following system of equations consisting

of replicas of (2.3) and (2.22) as well as of the constraint for variational derivatives for
conserved quantities Hy, (for a fixed ko) and eigenvalue A;

Eirj =y Evr; = —vi; + Ay j=4L...,N @.1a)
E D =—vgy;  EVy;=¢nj+Xdy;  j=1,...,N (4.18)
aH% Z 8}.} _ @.10)

We shall denote the inner product in R¥ by {-, -} and shall use the following notation:

Y = (Y1 ..., Pin)' ¢ = (i1, ..., ¢inY i=1,2
A =diag(}.1, R Y

By substituting (2.24a) into (4.1¢), we get

E¥ =1, E"I’z = =¥ + A, (42(2)
EDd = —vd, ENG, = @)+ AD, @.28)
8Hy,
= —(¥y, B2} . .
3 (¥, @2) (4.2¢)

As argued in [8-10], the system equation (4.2) is invariant with respect to the action of
all flows of the KvM hierarchy. So (4.2) is expected to give an integrable symplectic map
(1sM). We shall show that integrals of motion and integrability of (4.2) can be derived from
the discrete zero-curvature representation for KvM hierarchy. Following the procedure in
[15], we can introduce cancnical coordinates (g, p) for (4.2):

q=(QI,---,9N|)I P=(PI,---,PN1), (4'3)

and define Poisson bracket for any pair of functions f, g and any (g, p) as follows:

o 8g _ of dg
-8l = Z(apj 3q; 9g; ﬁ‘_w) @9

such that (4.2) can be cast in canonical form of a symplectic map:
Egi = filg(n), p(n)) Ep; = gi(g(n), p(n)) i=1,...., M 4.5)
where f;, g; satisfy

{fi, fi} =18, 81 =0 {fi.8}=25:i;. 4.6)

Now we present the first two symplectic maps obtained from (4.2) as examples.
(i) For ko = 1, equation (4.2¢) reads

(W1, ®2) =—1 4.7)
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which together with (4.2b) leads to
v = (W, ETV®) = (¥, &) (4.8)

Throughout this paper, we denote EI;,- = <I>§'l), i =.1,2. By substitution of (4.8), we obtain
from (4.2a) and (4.2b) the following map:

EWy =y EW, = —(¥y, D)0 + AW, (4.92)
~ ~ ~ ~ 1 ~
Eq)] = A(p] + q)z Eq)z = ——.Ju—q>1 . (4.9b)
(¥, ) (¥, Dr)

For equation (4.9} the canonical coordinates (g, p) are defined as follows:
g=(q1, -, gn) = ..., ¥ Yo, .o o, Yan ) Ny =2N

P=P1- e 2oY = @11y B1vs P21y oo, Bon) L

It is easy to verify that (4.6) for (4.9) holds, so (4.9) defines a symplectic map. From (4.95),
we have (¥, ®;) = (¥, EDz(= —1, so (¥, 3} = —1 in (4.7) is not really a constraint

(4.10)

for {(4.9).
(i) For kg = 2, it is found from (4.2¢) that
v+ 0P W =y, @) .11
Define
GaNel1 =V pany =vD 4.12)
then the system (4.2) with (4.2¢) given by (4.11) can be rewritten in the canonical form
EV, =9, Ey, = —ganN+1 W+ AW, 4.13a)
1 ~
Egoyyr = ——{¥1, D1) — Gans1 — Paned (4.13b)
JaN+1
Ed, = A +B, - EDy=-— Py, (4.13¢)
g2n+1 gan41
Epinil = Gant1 - 4.13d)

For equation (4.13) the canonical coordinates (g, p) are defined as follows:
g =G ..., ganp1) = W1, -, Vav. ¥a1. - - - Yo, 0)' Ny =2N+1

= (Plsees prvir) = @11y oo, P1v, B21s oo L Gon, VDY

it is easy to verify that (4.6) for (4.13) holds, so (4.13) also defines a symplectic map.
We now use (4.13) (kg = 2) as an example to illustrate how the integrability of the
symplectic map can be deduced from that of the KvM hierarchy (2.15).

Lemma. Under (4.13), let us define

(4.14)

do=ap=1 @y = a2 = gan+1 by =b =—1 by = by = —gant1 — Pl

£ = €1 = gan+1 G =cy= (¥, By) — G2N+1 P2N+1 ‘ (4.15a)
Gyt = by =8y =0  i=01,... -

Gy = %(( AP B) — (AT, 850 i=2,3,... (4.155)
baer = (A% 34:1,4:2) Ears1 = (A¥20, §,) i=2,3,... (4.15¢)
~ (& b - T YA

F=(7 _ ) gom =§(‘_ —a,))“' (4.15d)
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then under (4.13) T satisfies (2.7), and

D@ +66=0 (4.16)
and
k -1
Fy = Z&Zr'aﬂc—m‘ + me‘HEZk—Zi—l k=0,1,... (4.17)
i=o =0

are integrals of motion for (4.13).

Proof. 1t is easy to verify that under (4.13) &, b;, & defined by (4.15) satisfy (2.8), namely
under (4.13) T satisfies (2.3). Accordmg to (2.18), (4.16) holds. Substituting (4.154) into
(4.16) gives rise to

D Z (Z Goidoy—z; + Z boit1Cak—zi— )l"z’c =0

k=0 “i=0

which implies that under (4.13) and (4.15) we have

k k=1
D(gﬁyayg_zi + Z(;b25+152k_2;_1) =0 k=0,1,....
i= i=

Thus Fy calculated by means of (4.17) and {4.15) are integrals of motion for (4.13). This
completes the proof.

By substituting (4.15) into (4.17), we obtain the integrals of motion for (4.13} as follows:

Fo = =0 = —3((¥1, &) + (Y2, 20 (4.18a)

Luaty, ) - (Az‘I‘z, 32)) — (A3, B1) + gan s (AW, By

— paws1 (W1, B1) — gaw1 (Wa, B2) + g Powst + Gon1Piny  (4.18B)
Fi = 1A%, &1) — (A%, B)) — (A%, 3y)
+ oy (AW, D) — (AZ 0, o)) + gon41 (AF5Ty, By)
~ (@241 P2 AT, @) + (B, 1) — gows1 Pan+1){AF T, By)
k-5 ‘
+ Y AT, B (AT, By
=0
k_4 . ot L L . L
+1 Z((Az' Wy, D) — (AZy, oA B, @) — (AKHBY, B,
i=0
k=45, .... 4.18¢)

1
3
=1

By using (2.19) and (2.20), we can show (see appendix B for detail) that
{F, F,} =0 k.m=0,1,... 4.19)

which means that integrals of motion F; are in involution with respect to (4.4).
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Notice that we assume all A; to be distinct to have the Vandermonde determinant of
Aty ..., Ay different from zero. For a specific N, it can be verified that

(P, F, ..., Fany2)
(11, - v, P21y - -, P2y Poval)

so gradf;, k= 2,...,2N + 2, are linear independent. Thus we have

#0 (4.20)

Proposition 3. The F, given by (4.18) are functionally independent integrals of motion in
involution for (4.13), and the symplectic map (4.13) is completely integrable in the Liouville
sense [15].

Similarly, we obtain the integrals of motion for (4.9) as follows:

Fo=1 F=-3(¥,&)+ (¥, ) 4.214)
£ = %((Aﬂ‘_z‘l’], @) — (AF 20, @y)) — (A% 30, @)
k-3 .
+ (W1, (AR, Do) + Y (AT, ) (A% E S, &)
i=0
k2 ' - . - _ N ' »
+ Y FUATY, By — (AT, SAFF A, By) —(A%H T, Ba))
i=0
k=2,3,... (4.215)

and conclude that the map (4.9) is an ISM.
Finally, for the system (4.2), we define

Grini = by =8 =0 i=01,... L (4.22a)
&y = a; byis1 = bup Coigl = C2441 i=0...,ko—1 (4.22b)
@y = ({A¥ 0w, @) — (AT 20y, §y)) i=lkyko+1... (4.22¢)

by = (AT Moty &) Gy = (AFHatly, &) i=kyko+1,....
(4.224d)
Then under (4.2) &;, b; and ; satisfy (2.8), so integrals of motion F, for (4.2) can be
calculated from (4.17) and (4.22). Integrals of motion for (4.5) can be obtained by expressing
the F; in terms of (g, p). Similarly, we consider the time evolution equations for g and p

which can be constructed out from (B.1), and show that the F, are in involution. So (4.5)
is an integrable symplectic map.

5. The continuous limits for restricted flows of the XvM hierarchy -

‘We consider the following restricted flows of the KvM hierarchy:

E‘:Ul = ‘I’z E\I-‘p_ = —U\I‘] -l-A\I‘z (5102)
ESNG =~y ECNGy = ¢ + AP, (5.15)
B + (1, &) = 0. (5.1c)

As we show in preceding section, (5.1) can be transformed into an integrable symplectic
map.
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The restricted flows of the KdV hierarchy is defined in [2, 3] as

T, =", W = (A — )W) (5.24)
@ =~ -u)®, @y = -0, (5.2b)
Put (U1, P2)=0 (5.2¢)

where the definition of ¥;, ®; and A is analogous to that for ¥;, ®; and A. It is shown in
[2,3] that (5.2) can be transformed into a finite-dimensional integrable Hamiltonian system
(FDIHS).

As we show in appendix C, we have

Proposition 4. The continuous limit of (5.1} gives rise to (5.2).

Thus integrable symplectic map (5.1) provide numerical schemes for the finite-
dimensional integrable Hamiltonian system (5.2).

For example, form =l and Po=1— % Then equations (5.1¢) and (5.1b) give

v=1+ ¥, &) (5.3)

By substituting (5.3) into (5.1a) and (5.15) we obtain the following integrable symplectic
map:

EW =W  EV=—(1+ (%, )V + AV, (5:4a)
&) = = (;b ¢|>A$1 +&  E$,= —m:_)&;l : (5.4b)

For m = 1 and P; = u, equation (5.2¢) gives
u=—{W;, 0. (5.53)

Substituting (5.5) into (5.2a) and (5.25) yields following system:

V=¥ o =A+ T, 2NV (5.6a)
D1 =—(A + (¥, D2)) P2 Py =—P (5.65)

which is a FDIHS called as Garnier system. The continuous limit of 1SM (5.4) gives, due to
proposition 4, the FDIHS (5.6).
If we change the restriction (5.1¢) and take
Pp=1=—(¥, &) 5.7
then we find from (5.1b) that
v = (U, &)

and (5.1a), (5.15) can be transformed into the following integrable symplectic map:

EV =¥, EW, = — (U, &)W + AV, (5.8a)
EG| = ——AD + Dy Edy = ————Py ., (5.85)
(¥, Oy) ' (¥, Oy)
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Notice that P, = %?0 = 1, so the continuous limit of (5.7), due w0 (C.2) by taking
m =0, gives

(¥, @2} = 1. (5.9a)

Thus the continupus limit of (5.8), according to (C.1) with m = 0, gives the well known
Neumann system consisting of (5.9a2) and of

V=", Tup=E- ", o)+ AT, TNT) (5.95)
D), = —(A — (T2, D1) + (AT, $)) D, Doy = — Py - {(59¢)
So the 1M (5.8) can be used for numerical schemes for calculation of the Neumann system
{5.9).

Integrals of 7motion of (5.8) are also related to integrals of motion of (5.9). For instance,
we have

Fi =Fih+ 03 (5.10a)

Fo+ Fi —1=Fh* + O(h%) (5.100)
where F; and F; are integrals of motion for (5.8) and (5.9), respectively, and given by
[2,3,9,10] .
Fr= (0, &) + (U, B)
P = (A%, O} — (A%, o) + S((W1, D1) = (g, 2))°

. = 2{AW,, @;) + 2{AW, P2) (W1, @y)
Fi1= (¥, &) + ¥, ®3)
Fa = —4(, By} — 4(AT,;, D) + L((F1, By} — (T, B))°.
In general, by using (C.1) and expanding in powers of k, we can find that the

combination of integrals of motion Fy, Fz, ..., F, for (5.8) (or for (5.1)) goes to integral of
motion Fj for (5.9) (or for (5.2)) in the continuous limit.

It would be interesting to compare the above method with other method for numerical
scheme for calculation of FDIHS. We leave it for further numerical studies.
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Appendix A. Proof of proposition 1
Tt is easy to verify that for the Hamiltonian operators we get

J = =2k — (10° +4ud + 2u,)h* + O(%) {(A.la)
IV = —1n7197 4+ 1071(39% + 4ud + 2u,)3 7 h + O(R?) (A1)
G = -8k — (L& +24ud + 12u, )1’ + O() (A.le)
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which gives the expansions

177G — 1= By'Bin* + O(h*) (A.1d)
G — A%J = —8(B) — LBo)h® + O(h™) (A.le)

which is just the formuia (3.3).

Notice that
- 2 ) o 2
Py=dPy=—=2-2uh’+..- = Po+ O (A2)
and
JPy=0 (A3)

so by using (A.1d) we obtain
(307G —1) 2 = By B Pok® + O(R%).
It, together with (2.98) and (2.294), lead to
Py = Py + BroPo = P1h* + O (A4)

where B is an undetermined constant. We now show (3.8) inductively. Using (A.1d) we
have

k=1

(3776 -) Eﬁk LiPy =} Zﬁk LiPasny + vefo — Zﬁk—1 i Pai
i=0
—1 1
= 70k-14-1P2r + Z(Eﬁk—:l.i—l — Be-1.1)Por + BroPo
=1 -
= By B P 1h® 4+ O(h®*) = Prh® 4+ O(h%+H), (A.5)

It gl'ves (3.8a) and (3.8b) except the formula for Big. It is known that the coefficient of u*
in Py is %"r_’,lsz—‘ Observe that

1
- = _ chz
Po=2 2(1+uh2) Zo( “

and the term «*h% on the left-hand side of (3.8a) comes from P, only. Then by comparing
the coefficients of #*h* at both sides of (3.84) we get immediately the formula for By o
given by (3.8%). This completes the proof.
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Appendix B. The involutivity of F}

In order to prove involutivity of F, we consider equations following from (2.12), (2.15)
and (2.23) '

m m—1 7

Ui = ZGMAQM-M\III + E b AT - bop W (B.1a)
k=0 =0
m=1 "

Yot = E Cnrt AT = " gy AT H, (B.1&)
=0 =0 '

v, =v@s’ —a) (B.1¢)

— m - m—1 - .

D4, =— ZGZkAzm_qu)l - Z Cotpt AP E By — by (B.1d)

=0 =0

~ mn—1 - m -

P2y, =— szk+1ﬁz"’_2k_l D1+ ZdzkAz'”'y‘fI)z (B.1e)
C k=0 k=0

o = v @? — aam) - : ®.19)

By using (4.13) and (4.18), it is easy to verify by a straightforword calculation
that equation (B.1) with ax, by, c; replaced by &g, by. & becomes a finite-dimensional
Hamiltonian system (FDHS), i.e.

3 Fpy2 ~ _0F4

11)'. = . — = 1, 2 B.Z
[ _’°_a¢i f ™ a‘p,' ( a)
aFm+2 8Fm+2
= = B.2b
2N 1, T D2N+1ty et (B.2b)
Since T satisfies {2.12), according to (2.19) and (2.20), one gets
d ., ¢ d
- b =0 —F. =0 = ... .
a a~ + bf) a, T km=0,1, (B.3)

which implies that the Fy are also integrals of motion for FDHS (B.2). The Poisson bracket
for (B.2) are same as (4.4). So immediately from (B.2) and (B.3) we have

d
{F, Fap2l=——F, =0 " "k m=0,1,... B.4)
dt,
which leads to (4.19) and means that integrals of motion F; are in involution with respect
10 (4.4).
Appendix C. Proof of proposition 4

Let us, according to (3.1) by taking « = A™, (5.1) and (5.2), expand
EWpn) = 1+ u(x + kh)h® A =2+ AR (C.1a)
EWN, (n) = h™ W\ (x + kh) E®®,y(n) = K™ ®a(x + kh) ~ (C.1b)

=]
EWW (n) = ™ [ﬁl (x +kh)+ Z
i=0

T 3, (x +kh)(-h)"+'] (C.10)

E(k)cpl(n} = h" [_Ez(x +kh) — Hg(x +kh)h2 _ Z : 1 8i$1(x +kh)(—h)'l+ij| .
LG+ D)

(C.1d)
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Then
(B, ©2) = (W52, @) = 1™ (T, By) + 0> ). (C.2)

By using {3.84) and (C.1), we get

EY) — ¥y = h™H(T ), — 1) + O™H?) (C3a)
EW, + 0¥ — AV, = BT, — (A — w)¥] + O™ ) (C.3b)
ECDD) + vdy = A" [~y — (A — u)®@y] + O(h™ ) (C.3c)
ECN D, — @) — Ady = B™T(—D,, — By) + O™ (C.3d)
P + (U, B) = 2Py + (T, By)) + O(R> ). (C.3¢)

This implies that the continuous limit of (5.1} gives rise to (5.2).
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