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Abstract. The continuous limit for the KaoVan Moerbeke ( K ~ M )  hierarchy, for their bi- 
Hamiltonian formulation. recursion relation and square eigenfnnction relation is studied. A new 
family of integrable symplectic maps (ISM) are reduced from the KvM hierarchy via constmint for 
a higher flow of the hierarchy in terms of square eigenfunctions. Their integrability is deduced 
h" the discrete zerozulvature representation of the KuM hierarchy. It is shown that these 
ISME provide maps which approximate many well h o w n  integrable mechanical systems (e.g. 
Neumann. Gamier) embedded into the mv hierarchy as their restricted flows. 

1. Introduction 

It is a very remarkable fact that all stationary and restricted flows of the KdV hierarchy are 
equivalent to finitedimensional integrable Hamiltonian systems (FDIHS) (see, for example, 
[ 1-31), In practice solutions of such Hamiltonian systems are computed numerically with 
the use of standard discretization procedures (e.g. the multistep method) which are non- 
integrable and introduce numerical chaos into the computational process. Much better 
approximation procedures are exhibited by symplectic maps [4] and even better by integrable 
symplectic maps which stay on invariant ton of its integrals of motion [5 ] .  

A natural and interesting question is to construct integrable discretization for the 
integrable Hamiltonian systems which follow from restricted flows of soliton hierarchies. 
By restricted flows of a soliton hierarchy we mean sets of ODES invariant with respect to 
the action of all flows of this hierarchy which are constructed in the following way: they 
consist of a fixed number of copies of the spectral problem and of a resniction for a (higher) 
flow of the hierarchy in terms of square eigenfunctions. It has been shown [Z, 3,6,7] that in 
many instances these restricted flows are finite-dimensional integrable Hamiltonian systems. 
A general procedure for constructing integrable symplectic maps as restricted flows of a 
difference soliton hierarchy of equations, which follow from the proper discretization of the 
continuous spectral problem, has been introduced in [8-101. We suppose that the hierarchy 
of integrable discrete systems is associated with a discrete isospectral problem and possesses 
Hamiltonian structure. Then we consider the system consisting of N copies of the spectral 
problem and.of constraint relating the variational derivatives of Hamiltonian functions and 
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eigenvalues. This system is also invariant under all flows in the hierarchy, and give rises 
naturally to discrete Euler-Lagrange equations. In many instances these systems have the 
form of integrable symplectic maps (ISM). However, it is not a trivial task to show that these 
maps go to the Hamiltonian systems defined as restlicted flows of the continuous hierarchy. 
In the best case one would like to show that all structures of the discrete hierarchy, such as 
the spectral problem, recursion relation, and square eigenfunction relation and Hamiltonian 
structure, together with integrable maps go to the corresponding objects of the continuous 
hierarchy. 

In this paper we study the Kac-Van Moerbeke (KVM) hierarchy, and show how their 
Hamiltonian structure, recursion relation and square eigenfunction relation converge to those 
for the KdV hierarchy. We will show that the restricted flows of the KvM hierarchy can 
he transformed into symplectic maps, and integrals of motion and integrability for these 
symplectic maps can be deduced directly from the discrete zero-curvature representation for 
the hierarchy. We find that these ISMS are discrete version of restricted flows of the KdV 
hierarchy. 

Discrete versions of several classical integrable systems are investigated in [ll]. To 
describe such a discrete system a variational principle is taken as a starting point, and the 
Lax representation for the discrete integrable system is found via a factorization of certain 
matrix polynomials in [ 111. In our approach the starting point for reducing discrete maps is a 
hierarchy of integrable discrete systems with Lax representation and Hamiltonian structure, 
and the property of these maps, such as the Lax representation, is directly deduced from 
one of the hierarchy. It is easy to find that our approach and the approach mentioned above 
are quite different and used to treat different subjects. 

This paper is organized as follows. In the next section, we briefly describe a zero- 
curvature representation for the KVM hierarchy. Then in section 3 we show how the 
Hamiltonian structure, the recursion relation and the square eigenfunction relation for the 
KvM hierarchy converge to those for the KdV hierarchy, and find a sequence of equations 
in the KvM hierarchy which has the KdV hierarchy as a continuous limit. In section 4, we 
show that restricted flows of the KvM hierarchy can be transformed into a symplectic maps, 
and their integrability can be deduced duecly from that of KvM hierarchy by means of the 
discrete zero-curvature representation. Finally in section 5 we prove that restricted flows of 
the KvM hierarchy go to restricted flows of the KdV hierarchy. 

2. The KvM hierarchy and the KdV hierarchy 

2.1. The KvM hierarchy 

We now briefly present the discrete zero-curvature representation for the KvM hierarchy 
which can be deduced from that for Toda hierarchy in [12]. Consider the following discrete 
isospectral problem [13], 

where U = u(n,  t )  and y = y(n, t )  depend on integers n E Z and t E W, A is the spectral 
parameter, shift operator E and difference operator D are defined as 

(Ef)(n) = f(i+ 1) ( D f ) ( n )  = ( E  - l ) f ( n )  n E Z. (2.2) 
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Throughout this paper we Write f ('1 = E") f .  The scalar spectral problem (2.1) is equivalent 
to the following matrix spectral problem: 

:) E@ = U@ U = U ( U ,  A) = (2.3) 

with 

* = (*l. *211 = (E(-I)y, y) ' .  (2.4) 

To derive the hierarchy of evolution equations associated with (2.3), we first solve the 
stationary discrete zero-curvature equation [12] 

(Er)u-ur=o. (2.5) 

By substituting 

into equation (2.5) and taking the initial value as 

(2 .8~)  
(2.86) 

( 2 . 8 ~ )  

(2.84 

(2.9a) 

(2.9b) 
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The first PZ read 
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Pz = 1 p4 = " + + u( l )  
1 

2u 
Po = - 

(2.11) 

We set the auxiliary linear problem as 
+lm = V h +  m = 1,2, . . . 

with 
(2.12) 

The compatibility condition of (2.3) and (2.12) gives rise to the discrete zero-curvature 
equations (assuming Atm = 0) 

U, = (EVh)U - UVh m = 1,2, ... (2.14) 
which is the Kac-Van Moerbeke (KvM) hierarchy of equations 

m = 1,2 .... (2.15) SH2, 
SU 

U, = U(<) - 4) = J P h  = J- 

By & we denote discrete variational derivative defined as 

We remind the reader that 

(2.16) bzm+l Hzm -- . SH2m a h  &=-= - -  
SU U 2m 

Let us define V in terms of r by r = VU. Then it is deduced from (2.5) that 
D r  =[U, VI r(l) = uv (2.17) 

D(az + bc) = $D(Trrz) = $[Tr(UV)' - Tr(VV)'] = 0 (2.18) 
where Tr means trace of a matrix. In the same way as given by [14], we get from (2.12) 

which yields 
rc = [vh, ri (2.19) 

The adjoint equation of (2.1) is 
(E(-') + Eu)y* = Ay" 

(2.20) 

(2.21) 
and in matrix form 

E(-l),$ = @U @ = ($1, $2) = (-E(uy'), y') . (2.22) 

E(-l)&m = .+(-U 4)Vzm. (2.23) 

(2.24a) 
61 
SU 

G-=A J -  or ( G - A Z J ) ( @ l h ) = O .  (2.24b) 

The adjoint equation of (2.12) reads 

It can be found by a direct calculation that 

*I& _ = _  

SA SA 
SU SU 
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2.2. The ~ d v  hierarchy 

For the Kdv hierarchy we accept the follwing conventions. 
Schriidinger spectral problem of the form [14] 

It is associated with the 

(a2 + - T.)? = o (2.25) 

which can be written as 

where 8 = & and 

* = ($1. &If = (3, j d ’ .  

The KdV hierarchy then reads 

ut, = Bopm 

where all Fk are determined from the recursion relation 

BoFk+l = BlFk  k = 0, 1 , . . . 
B~ = a ~ ~ = ~ a  1 3  + u a + $ u , .  

The first 7 2  are 

- - - 
P o = 2  P 1 = u  P 2 = $ ( 3 u 2 + u z x )  

1 - 
p 3  = E(~zxxxz + iouu,, + 5 4  + 1 0 ~ ~ ) .  

The adjoint equation of (2.25) is 

(a2 + U - i ) j *  = o 

and in the matrix form 

a$ = -$U $ &) = (-y;, ?*). 

It is known that 

or (B ,  -  BO)(&&) = 0. 
S i  - s i  

B1- = A&- 
SU SU 

(2.26) 

(2.27) 

(2.28) 

(2.29a) 
(2.29b) 

(2.30) 

(2.31) 

(2.32) 

(2.33~) 

(2.33&) 



3830 

3. The continuous limits of the KvM hierarchy 

In this section we will show that the Hamiltonian structure, the recursion relation and the 
square eigenfunction relation for the KvM hierarchy converge to those for the KdV hierarchy, 
and find a sequence of equations in the KvM hierarchy which has the KdV hierarchy as a 
continuous limit. 

Y Zeng and S Rauch-Wojciechowski 

Let us consider the KvM hierarchy on a lattice with a small step h. Define 

u(n) = 1 + u(x)h2 y(n) = IY?(X)  y*(n) = aj*(x)  1 = 2 + l h 2  (3.la) 

whare a is a constant, and 

E(k)u = 1 + u(x + kh)h2 

It is known that the spatral problem operator has the expansion 

( E  + uE"" - A)y = ah2(i12 + U  - x)uf + O(h3) ( 3 . 2 ~ )  
( E U  + ~ ( - 1 )  - ~ ) y *  = + - i ) u f *  + o(h3) .  (3.26) 

E")y = ~uf (x  + kh) E"y* = aY(x + kh) . (3.16) 

Then we find (see appendix A) that 

G - A 2 J = - 8 ( B 1 - h B o ) h 3 + O ( h 5 ) .  (3.3) 

Notice that 

y = *2 = a? = a& y* = ,& = U?* (3.4a) 

and therefore 

(3.46) 2 -  - +I& = &'),& = 01 $I,& + O(h) 

Thus it follows from (3.3) that for square eigenfunctions 

(G - A2J)(*1,&) = -8a2h3(B1 - ,iEo)($l&) + O(h4) (3.5) 

which implies that the continuous limit of (2.24b) gives (2.336). It is known [I41 that for 
the properly defined square eigenfunctions 

so that, due to (3 .3 ,  the recurrence relation (2.96) corresponds to the recurrence relation 
(2.290). 

Also it is shown in appendix A that we have the following relationship between & 
and 4: 
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Proposition 1. 

where 
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( 3 . 8 ~ )  

(3.86) 

From equations (3 .8~)  and (3.3a), we obtain 

and 

So we have the following proposition. 

Proposition 2. The following sequence of equations in the KvM hierarchy. 

1 -  
ut. = -- 2hZm-IJPu ,  m=-l ,2 ,  ... 

goes to the KdV hierarchy (2.28) in the continuous limit. 
For example, for m = 2, we find that the equation 

has the following KdV equation as a continuous limit: 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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4. New integrable symplectic map 

We consider for N distinct Aj ,  j = 1, . . . , N ,  the following system of equations consisting 
of replicas of (2.3) and (2.22) as well as of the constraint for variational derivatives for 
conserved quantities H% (for a fued ko) and eigenvalue Aj 

E1G'lj = &j Eqz j  - W l j  + A j h j  j = 1, ..., N (4.1~~) 
E(-')& j = -u&j (4.lb) 

Y Zeng and S Rauch-Wojciechowski 

E ( - ' ) h j  = 41 j + A j 4 j  j = 1, . . . , N 

(4.1~) 

We shall denote the inner product in RN by (., .) and shall use the following notation: 

%=('hI....,'kiN)' @i = (@ililr . . . , &N)*  i = l , 2  
A =diag(Al, ..., AN). 

By substituting (2.24~) into (4.1~). we get 

Eq1 = Yz EYz = -u'€'~I + AV2 (4.244 
E(-')@~I = - U @ Z  E(-"@2 = @I + A@2 (4.2b) 

-- a% - -(%, @ 2 ) .  (4.2~) 

As argued in @-lo], the system equation (4.2) is invariant with respect to the action of 
all flows of the KvM hierarchy. So (4.2) is expected to give an integrable symplectic map 
(ISM). We shall show that integrals of motion and integrability of (4.2) can be derived from 
the discrete zero-curvature representation for KvM hierarchy. Following the procedure in 
[15], we can introduce canonical coordinates (q, p )  for (4.2): 

SU 

q = (41,. . . , qN,)'  P = ( P l  . . . . , P N r ) '  (4.3) 

and define Poisson bracket for any pair of functions f, g and any (q, p )  as follows: 

(4.4) 

such that (4.2) can be cast in canonical form of a symplectic map: 

Eqi = fi(q(n), p(nN Epi = gi(q(n), i = 1, .. . , NI (4.5) 

where fi. gi satisfy 

(fi ,f i l=(gi,gj}='J ( f i , g j } = & . j .  (4.6) 

Now we present the first two symplectic maps obtained from (4.2) as examples. 
(i) For ko = 1, equation (4.2~) reads 

WI. @z) = -1 (4.7) 
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which together with (4.2b) leads to 

Throughout this paper, we denote 5; = @-I), i =~ 1.2. By substitution of (4.S), we obtain 
from (422) and (4.2b) the following map: 

- 
U = (WI, E ( - ' ) % )  = ("1, ai) .  

EYI = Y2 EY2 = -("I, Gl )Yl+ AY2 (4.94 

(4.8) 

(4.9b) 

For equation (4.9) the canonical coordinates (q, p )  are defined as follows: 

4 

p = ( P l ? .  .. 7 p 2 N ) '  e ( $ I l , . .  ., # I N ,  $ 2 1 , .  . . &N)' .~ 
(41,. . 9 @NI' E ( h l . .  . h', !h,. . . , @w)' NI = 2N - -  (4.10) 

It is easy to verify that (4.6) for - (4.9) holds, so (4.9) defines a symplectic map. From (4.9b). 
we have ("1, 4 2 )  = ("1, E%(= -1, so ("1, %) = -1 in (4.7) is not really a constraint 
for (4.9). 

(ii) For ko = 2, it is found from ( 4 2 )  that 
U + d-1) + U(]) = -(Y1, Q2) . (4.11) 

Define 

@N+1 = U " + ]  = ~ l J ( - l )  (4.12) 

then the system (4.2) with ( 4 2 )  given by (4.11) can be rewritten in the canonical form 
EYI W, E% = -qz,v+i'?'i + A %  (4.13~) 

= q Z N + 1  . 
(4.13~) 

(4.134 

For equation (4.13) the canonical coordinates (4 ,  p )  are defined as follows: 

4 =(q1 ..... q 2 N + l ) * - ( ~ l l r . . . r ~ I N ~ ~ Z 2 1 .  . . - > @ Z N , U ) '  

P = ( P I , . . . , P 2 N + l ) f  - ( ~ l l , . . . , ~ l N , ~ 2 1 r . . . r ~ 2 N , U ( - 1 ) ) f  

N I  = 2 N + 1  
(4.14) 

it is easy to verify that (4.6) for (4.13) holds, so (4.13) also defines a symplectic map. 

symplectic map can be deduced from that of the KVM hierarchy (2.15). 
Lemma. Under (4.13), let us define 

We now use (4.13) (ko = 2) as an example to illustrate how the integrability of the 

&=w=' - - 
& = az = q Z N + 1  bl = bl = -1  b3 b3 - q 2 N + 1  - P Z N + 1  ,.. 6 CI = @N+1 z 3  e3 = ( q l ,  @ I )  - q Z N + I P Z N + l  (4.15~~) 

- 
&+I = bz = Ezi = 0 i = 0, 1, . . . 
iiz = ~ ( ( A ~ ~ - ~ Y ~ ,  5 1 )  - ( ~ * ~ - ~ \ y ~ .  5 2 0  (4.15b) 

6,+1 = (A2i-3Y~, 52) ~ c?zi+i = (A2i-3Y2, & )  i =~2 ,3 , .  . . (4.15~) 
i = 2.3,. . . 

(4.154 
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then under (4.13) F satisfies (2.7), and 
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D(Z2 + LE) = 0 (4.16) 

and 

(4.17) 

are integrals of motion for (4.13). 

ProoJ It is easy to verify that under (4.13) &, 6i, Zi defined by (4.15) satisfy (2.8), namely 
under (4.13) F satisfies (2.5). According to (2.18), (4.16) holds. Substituting (4.154 into 
(4.16) gives rise to 

which implies that under (4.13) and (4.15) we have 

k-4 
+ $ ~ ( ( A z i ~ l ,  8j)-(AziV2,  &))((Az-2-s’J’1, $ ) I ) - ( A ~ - ” - ~ Q ~ ,  82)) 
k = 4.5, .. . . (4.189 

i=O 

By using (2.19) and (2.20), we can show (see appendix B for detail) that 

(Fk,F,,J=O k , m = 0 , 1 ,  ... (4.19) 

which means that integrals of motion ~ F k  are in involution with respect to (4.4). 
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Notice that we assume all Aj  to be distinct to have the Vandennonde determinant of 
A,, . . . , AN different from zero. For a specific N ,  it can be verified that 

(4.20) 

so grad& k = 2, . . . , 2N  + 2, are linear independent. Thus we have 

Proposition 3. The FX given by (4.18) are functionally independent integrals of motion in 
invoIution for (4.13), and the symplectic map (4.13) is compIeteIy integrabIe in the Liouville 
sense [15]. 

Similarly, we obtain the integrals of motion for (4.9) as follows: 

k = 2,3, ... (4.21b) 

and conclude that the map (4.9) is & ISM. 
Finally, for the system (4.2), we define 

- 
&+I = & ; = E 2 ; = 0  i = o , I ,  ... . (4.220) 
2% = a2i &2(+1 = b2r+l &+I = czi+l i = 0, . . . , ko - 1 (4.226) 
& =  ~ ( ( A z i ~ z x o Y ~ . ~ ~ ) - ( A z i ~ - 2 * o Y ~ . ~ ~ ) )  i=ko.ko+l  ... (4.22~) 

&+I = (Az-zxo+lYy,, 5 2 )  &+l = (A z i - ~ + l Y 2 ,  5,) 
(4.226) 

i = k0,kO -t 1,  . . . . 

Then under (4.2) 2;,&; and Fi satisfy (2.8). so integrals of motion Fk for (4.2) can be 
calculated from (4.17) and (4.22). Integrals of motion for (4.5) can be obtained by expressing 
the Fk in terms of (q .  p ) .  Similarly, we consider the time evolution equations for q and p 
which can be constructed out from (B.l), and show that the Fk are in involution. So (4.5) 
is an integrable symplectic map. 

5. The continuous limits for restricted flows of the KvM hierarchy 

We consider the following restricted flows of the KVM hierarchy: 

EQ1 ‘42 EWz = -UYI +AY2 
E(-’)@i = - U @ Z  E(-”@z = @I + A@z 
FZm + V I ,  (P2) = 0. 

(5 .1~)  
(5.lb) 
(5.1~) 

As we show in preceding section, (5.1) can be transformed into 
map. 

integable symplectic 
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The restricted flows of the KdV hierarchy is defined in [2,3] as 
- - - 
Y1, = Y* 
@ix = -(K - U ) @ Z  

p m  + (Yl. @2) = 0 

Yu = ( K -  u p 1  - - - - 
(Pa = -@I - - -  

(5.24 
(5.2b) 
( 5 2 )  

- -  
where the definition of Yi, @i and is analogous to that for Yi, Q j  and A. It is shown in 
[2, 31 that (5.2) can be transformed into a finitedimensional integrable Hamiltonian system 
(FDIHS). 

As we show in appendix C, we have 

Thus integrable symplectic map (5.1) provide numerical schemes for the finite- 

For example, for m = 1 and P2 = 1 - i. Then equations (5.lc) and (5.16) give 

Proposition 4. The continuous limit of (5.1) gives rise to (5.2). 

dimensional integrable Hamiltonian system (5.2). 

U = 1 +(Yl,  Z1). (5.3) 

By substituting (5.3) into @la) and (5.lb) we obtain the following integrable symplectic 
map: 

EYi = Yz EYz = -(1+ ("1, 51))Yl +AY2 (5.4~) 

(5.4b) 

For m = 1 and BI = U ,  equation (5.2~) gives 
- -  

U = -  (W1. Qd . (5.5) 

Substituting (5.5) into ( 5 . 2 ~ )  and (5.26) yields following system: 

(5.64 
(5.66) 

which is a FDMS called as Garnier system. The continuous limit of ISM (5.4) gives, due to 
proposition 4, the FDMS (5.6). 

If we change the restriction (5.lc) and take 

Pz = 1 = -(Y I r  Qd (5.7) 

then we find from (5.16) that 

U = (Yl. 51) 
and (S.la), (5.lb) can be transformed into the following integrable symplectic map: 

E Y I  = Y2 EY2 = -(Yl, &)Y1+ AY2 (5.8~) 

(5.86) 
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= 1, so the continuous limit of (5.7). due to (C.2) by taking Notice that P2 = 
m = 0, gives 

- -  
(*I, 0 2 )  = 1. (5.94 

Thus the continuous h i t  of (5.8), according to (C.l) with m = 0, gives the well known 
Neumann system consisting of (5 .9~)  and of 

So the ISM (5.8) can be used for numerical schemes for calculation of the Neumann system 

Integrals of motion of (5.8) are also related to integrals of motion of (5.9). For instance, 
(5.9). 

we have 

(5.10a) 
(5.10b) 

where Fj and 
[2,3;9,101 

FI = (*I. 51) + (*z, 52) 
Fz = (AZ'&. 51) - (A2*zp 5 2 )  +i((*i, 51) - (*z, 5 ~ ) ) ~  

FI = (*I. @ I )  + (*z. @2) 

Fz = -4(*z, QI)  - ~ ( A * I ,  @z) + ?((*I. @ I )  - (W2, ad)'. 

are integrals of motion for (5.8) and (5.9). respectively, and given by 

- 2(AYz,  51) + 2(A*1, ~ z ) ( * I .  51) ~- - -. - - 
1 - -  - -  -~ - -  _ -  

In general, by using (C.l) and expanding in powers of h, we can find that the 
combination of integrals of motion F1, Fz. . . . , Fk for (5.8) (or for (5.1)) goes to integral of 
motion Fk for (5.9) (or for (5.2)) in the continuous limit. 

It would be interesting to compare the above method with other method for numerical 
scheme for calculation of FDIHS. We leave it for further numerical studies. 
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Appendix A. Proof of proposition 1 

It is easy to verify that for the Hamiltonian operators we get 

J = -2ha - ( f a 3  + 4ua + 2u,)h3 + O(h5) (A.~Q)  

.I-' = -%-la- l  2 + i a - l ( 4 a 3  +4ua +2u,)a-1h + 0 ( h 3 )  (A.lb) 

G = -8ha - (+a3 +ma + 12u,)h3 +o(h5) (A.lc) 
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which gives the expansions 
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1J - 'G-1=BT1Blh2+O(h4)  4 

G - h2J = -8(B1 - iB0)h3 + O(h5) 

which is just the formula (3.3). 
Notice that 

and 

JPo = 0 

so by using (A.14 we obtain 

It, together with (2.96) and (2.29a), lead to 

where 
have 

is an undetermined constant. We now show (3.8) inductively. Using (A.ld) we 

= B;'BiFk.-ihW + 0(hw") = Fkh" +0(hZk+').  ( A 3  

It gives ( 3 . 8 ~ )  and (3.86) except the formula for pk.0. It is known that the coefficient of uk 
in Fk is w. Observe that 

P o = - =  1 1 = - l m  C(-U)'hz 
2u 2(1+uh2) 2 i=o 

and the term ukh" on the left-hand side of ( 3 . 8 ~ )  comes from Po only. Then by comparing 
the coefficients of ukhUI at both sides of ( 3 . 8 ~ )  we get immediately the formula for pk.0 

given by (3.86). This completes the proof. 
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Appendix B. The iuvolutiVity of F k  

In order to prove involutivity of FK. we consider equations following from (2.12), (2.15) 
and (2.23) 

(B.la) 

a d .  (B. (-1) = u(- l ) (&2 - 
Ur, 

By using (4.13) and (4.18), it is easy to verify by a stmightforword calculation 
that equation (B.1) with ak, bk, Ck replaced by Zk, &, & becomes a finite-dimensional 
Hamiltonian system (FDHS), i.e. 

(B.2n) 

(B.2b) 

Since satisfies (LIZ),  according to (2.19) and (2.20), one gets 
d 

(B.3) 
d 

-(Z2+6Z)=0 - F k = O  k , m = 0 , 1 ,  ... 
dtm dtm 

which implies that the FK are also integrals of motion for FDHS (B.2). The Poisson bracket 
for (B.2) are same as (4.4). So immediately from (B.2) and (B.3) we have 

d 
{ F k ,  Fm+2] = --FK = 0 . ~ k , m  = 0, 1,. . . (33.4) 

which leads to (4.19) and means that integrals of motion FK are in involution with respect 
to (4.4). 

dtm 

Appendix C. Proof of proposition 4 

Let us, according to (3.1) by taking 01 = hm, (5.1) and (5.2), expand 
E%(n) = 1 + u(x + kh)h2 
E")Wz(n) = h m v l ( x  + kh) 

A = 2 + x h z  
E"'@z(n) = hm&(x + kh) 

(C. la)  
(C. lb)  

1 m 

1 (x  + kh) + - aiFz(x + kh)(-h)'+' 
(i + i)!  i=O 

(C.lC) 

aiT1(x + kh)(-h)"' . 1 m 

+ kh) - ~ Z ( X  +kh)h2 - - 
i=O ( i  + l ) !  
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Then 

Y Zeng .d S Rauch-Wojciechowski 

('4'1, '4'2) = (W-'), Qz) =h*(vl,%) +O(hh+I). (C.2) 

By using (3.8a) and (Cl), we get 

EYl - \ Y Z = ~ ~ + ' ( ~ ~ ~ - ~ ~ ) + O ( ~ ~ ' ~ )  (C.3a) 

(C.36) + U Y ~  - ~q~ = hm+2[T& - (E-  u)Vll + o(hm+7 
E ( - I %  + vmz = hm+z[-Flx - (x - u)52] + o(hm+3) 

E(-')Oz - - AD2 = hm+'(-?& - 51) + O(hntz) 
L + ( \ Y l . Q Z )  = h  2"'- (P,+(vl,~zT,))+o(h~+'). 

(C.3c) 

K . 3 4  

(C.3e) 

This implies that the continuous l i t  of (5.1) gives rise to (5.2). 
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